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Laser Diode to Single-Mode Fiber Coupling Efficiency:  
Part 1 - Butt Coupling 
 

1 Introduction 
For fiber-optic transmitters, it is generally desirable 
to utilize the optical power generated by the laser 
diode as efficiently as possible. In practice, more 
than half of this power may be lost at the interface 
between a laser diode and a single-mode optical 
fiber. The purpose of this application note is to 
analyze the primary mechanisms that contribute to 
loss of efficiency. 
 

Butt coupling is the most basic method of coupling 
the optical output from a laser diode into an optical 
fiber. This simply consists of placing the cleaved 
end of the fiber as close as possible to the output 
aperture of the laser diode. In addition to butt 
coupling, there are other (more complex) methods of 
coupling, but these are outside the scope of this 
application note. 
 

There are many types of optical fiber in use today, 
including multimode, graded index, dispersion 
shifted, etc., and each has advantages for specific 
applications. For purposes of this analysis, we will 
use the published characteristics of Corning SMF-28 
step index fiber, which is one of the most widely 
used single-mode optical fibers. For this fiber, the 
numerical aperture (equivalent to the acceptance 
angle in units of radians) is 0.14, the core index of 
refraction is 1.650, the cladding index of refraction 
is 1.644, the core diameter is 8.2m, and the 
cladding diameter is 125m.  

2 Reflection and Refraction at the 
Air-Glass Boundary 

When light is incident on the boundary between one 
medium and another, part of it will be reflected away 
from the boundary and the rest will be transmitted 
across the boundary and into the new medium. The 
light that is transmitted into the new medium will 
generally experience a change in direction due to 
refraction. This is illustrated in Figure 1. 
 

The incident, reflected, and transmitted light 
components shown in Figure 1 all travel in the same  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
two-dimensional plane. The angle of incidence, i, 
and the angle of reflection, r, are equal. The angle 
of the transmitted light, t, relative to the normal at 
the boundary, is related to the angle of incidence by 
Snell’s law: 
 

     2211 sinsin  nn      (1) 
 

where n1 and n2 are the indices of refraction for the 
incident and transmitting media, respectively, 1 = i 

= r, and 2 = t.  
 
The fraction of the incident light amplitude that is 
reflected can be calculated using the Fresnel 
equations: 
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where RTE and RTM represent the amplitude 
reflection coefficients (i.e., the ratios of the reflected 
to the incident amplitudes) for the transverse electric 
and transverse magnetic polarizations of the incident  
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light relative to the plane of the boundary. The 
amplitude reflection coefficients for an air-glass 
boundary are plotted in Figure 2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
When coupling light into the single-mode optical 
fiber illustrated in Figure 1, the incident angles of 
interest are limited to i < 10 (for reasons that will 
be discussed in the next section). For this range of 
angles the reflection is approximately constant and 
independent of polarization. From equations (1), (2), 
and (3) we can calculate RTE  RTM  0.24 for i < 
10. 
 
Since we are interested in the power of the reflected 
light (instead of the amplitude) we can calculate the 
power reflection coefficient for i < 10 as follows: 
 

     0576.024.0 222  TMTE RR  (4) 
 

where  is the power reflection coefficient and 
represents the ratio of the reflected power to the 
incident power. The transmitted power is just the 
difference between the incident power and the 
reflected power, so, for the boundary in Figure 1, 
approximately 94% of the incident power is 
transmitted across the air-glass boundary. 
 
 

3 Total Internal Reflection  
For the 94% of the light power that is transmitted 
across the air-glass boundary, there is yet another 
boundary that is encountered. This is the boundary 
between the core and the cladding of the optical 
fiber. The equations of the previous section apply 
equally to the core-cladding boundary, but with 
different indices of refraction. The index of 

refraction for the incident medium (the core) is 1.65 
versus 1.644 on the other side of the boundary (the 
cladding). This is illustrated in Figure 3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Since the cladding index of refraction is greater than 
the core index of refraction, the angle of transmitted 
light (t) is greater than the angle of the incident 
light (i). As the incident angle is increased, there is 
a point where the transmitted angle is 90 and no 
light is transmitted into the cladding. The incident 
angle that results in a transmitted angle of 90 is 
called the critical angle. The critical angle can be 
computed mathematically using equation (1) (Snell’s 
law) as follows: 
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where c is the critical angle. For n1 = 1.65 and n2 = 
1.644, equation (5) gives a critical angle of 85.1. 
The power reflection coefficients for these indices of 
refraction can be calculated using the Fresnel 
equations [(2) and (3)]. These reflection coefficients 
are plotted in Figure 4. 
 
From Figure 4 we can see that for incident angles 
greater than the critical angle 100% of the incident 
light is reflected, resulting in a condition called total 
internal reflection. Since the reflected angle is equal 
to the incident angle, the propagating light will 
repeatedly bounce back and forth between the core-
cladding boundaries with the same angles. The 
process is repeated indefinitely, and the light 
propagates unimpeded along the length of the fiber. 
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Figure 2. Power reflected versus incident angle 
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For incident angles less than the critical angle, some 
of the light is lost through transmission into the 
cladding and the rest is reflected back into the core 
of the fiber. The process is repeated, but each time 
the light hits the core-cladding boundary a fraction 
of the power is lost. Thus, for incident angles less 
than the critical angle, light propagates only a short 
distance in the core before it is totally lost to the 
cladding. 
 
When coupling light into the optical fiber, we are 
generally interested only in the light that propagates, 
i.e. light that strikes the core-cladding boundary at 
an angle greater than the critical angle. Working 
back to the air-glass boundary, we see that the angle 
of the light entering the glass relative to the normal 
at the boundary (i.e., the angle labeled t in Figure 
1), must be less than 90 - c for total internal 
reflection. Application of Snell’s law to this 
condition yields the following equation for the 
acceptance angle of the fiber: 
 

     )]90sin([sin 1
ccoreA n       (6) 

 

Using this equation for the example fiber gives an 
acceptance angle of 8.1. (Note that the numerical 
aperture (NA) of the fiber is equivalent to the 
acceptance angle in units of radians.) An acceptance 
angle of 8.1 means that light striking the air-glass 
boundary at the core of the fiber will only propagate 
if the angle of incidence is less than 8.1 (0.14 
radians). 
 

4 Angular Divergence of the 
Laser Diode Output Power 

In order to determine how much of the light output 
power from a laser diode will couple into the optical 
fiber, we need to know the angular divergence of its 
output power. This can be determined from the 
dimensions of the output aperture of the laser 
through the use of Fresnel/Fraunhofer diffraction 
theory1 and Fourier optics2.  
 
For typical laser diodes, the active region (resonant 
cavity) has dimensions of 100-400m in length, 10-
20m in width, and 0.1-0.3m in height3,4. For 
example purposes, we will assume the output 
aperture is 10m wide (in the horizontal or x-
dimension) and 0.2m high (in the vertical or y-
dimension).  
 
Fraunhofer diffraction theory is based on specific 
approximations that result in a convenient Fourier 
transform technique for determining the effect of an 
aperture on a beam of light. The Fraunhofer 
approximation becomes increasingly valid1 as the 
distance from the aperture becomes greater than five 
to ten times the square of the maximum radius of the 
aperture divided by the wavelength (this is called the 
Fraunhofer distance). To use this technique we 
compute the product of the output aperture and the 
spatial intensity distribution of the light beam just 
inside the aperture. We then take the Fourier 
transform of the product and square the result5. This 
procedure can be written mathematically as: 
 

       2
),b(),a(FT),P( yxyxff yx    (7) 

 

where, P(fx,fy) is the angular distribution of the 
output power as a function of the spatial frequencies 
fx and fy, FT[ ] signifies the Fourier transform, a(x,y) 
is the aperture function, and b(x,y) is the spatial 
intensity distribution of the light beam. 
 
The light output of a laser can be modeled as a 
Gaussian beam. For a Gaussian beam, the angular 
intensity profile can be represented by the Gaussian 
function exp[-(x/wx)2]exp[-(y/wy)2], where w 
represents the aperture width in the x and y 
dimensions. This function has two unique properties: 
it’s Fourier transform is also a Gaussian function; 
and a Gaussian beam maintains the same angular 
intensity profile in the Fresnel and Fraunhofer 

Figure 4. Power reflected versus incident angle 
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regions (near and far field)1. Using the properties of 
the Gaussian beam output of the laser diode along 
with equation (7), we can calculate the angular 
intensity profiles of the laser output power in the x-
axis and y-axis. 
 
Figures 5 and 6 are plots of the laser diode output 
power as a function of the divergence angle. These 
figures were generated using the Fourier transform 
technique described above. The mathematical 
derivation of these figures is detailed in the appendix 
at the end of this application note. The key point to 
observe is the inverse relationship between the 
angular divergence and the aperture dimensions. For 
example, the larger horizontal dimension results in a 
tighter angular intensity profile (Figure 5) while the 
smaller vertical  dimension results in a wider angular 
intensity profile (Figure 6). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Recalling that the acceptance angle for the example 
optical fiber is 8.1, we can see from Figures 5 and 6 
that a butt-coupled optical fiber will accept most of 
the laser output power in the horizontal direction, 
but only a fraction of the power in the vertical 
dimension. We can calculate a reasonable estimate 
of the output power that will be accepted, by 
integrating the two angular intensity patterns over 
the range of acceptance angles and computing the 
product of the results, i.e. 
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where PA is the accepted power and I() represents 
the angular intensity pattern. Application of equation 
(8) to the angular intensity patterns of Figures 5 and 
6 (using numerical integration methods) results in PA 
 31% of the total output power. 

5 Total Butt Coupling Losses 
For the example analysis of this application note, we 
have calculated a reflection loss of 5.8% and an 
acceptance angle loss of 69%. Combining these 
losses, we can calculate the total fiber coupled 
power as (1 – 0.0576)(1 – 0.69) = 29% of the total 
laser output power.  
 
In addition to the reflection and acceptance angle 
losses, there are a number of other possible losses 
that have not been addressed. These include losses 
due to: (1) imperfect cleaving of the optical fiber, (2) 
misalignment of the optical fiber, (3) laser output 
aperture dimensions larger than the fiber core 
(mismatch loss), and (4) intentional angling of the 
face of the optical fiber to reduce back reflections 
into the laser diode. All of these losses typically 
occur to some extent with butt coupling and will 
therefore reduce the fiber-coupled power beyond the 
figure calculated above. For example, some 
references report practical butt coupling efficiencies 
as low as 10% 6. 

6 Conclusions 
We have demonstrated through analysis that the 
typical efficiency of butt coupling will be less than 
29%. Clearly it is desirable to improve on this 
figure. There are many techniques that can be used 
to realize an improvement, including: (1) anti-
reflection coatings and/or index matching gels to 
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Figure 5. Gaussian angular intensity profile –  
               horizontal dimension (x-axis) 
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reduce reflection losses, (2) improved alignment 
techniques, (3) lensed optical fibers, where the end 
of the fiber is specially shaped to improve the 
acceptance angle, and (4) lens systems that reshape 
the laser output for a better match to the fiber core. 
Using these and other techniques, coupling 
efficiencies as high as 87% have been reported 7.  
Unfortunately these techniques can be complicated 
and expensive. Economical assembly to support 
competitive pricing may rule out all but the simplest 
methods. Thus, in many cases, butt coupling may be 
the only feasible method. 

 

Appendix:  Mathematical Details 
for Calculating the Angular 
Divergence of the Laser Output 
Power  
For the maximum radius of the example aperture 
(5m) and a wavelength of 1.31m, the Fraunhofer 
distance is approximately 95 to 190m. This means 
that equation (7) begins to be a good approximation 
at a distance of 95m, and becomes a very accurate 
approximation for distances greater than 190m. In 
practical butt coupling configurations, the cleaved 
end of the optical fiber is placed as close as possible 
to the output aperture of the laser diode, which is 
typically 10 to 20m. Even though the distance 
between the aperture and the fiber does not meet the 
criteria for the Fraunhofer approximation, the 
criteria will be met after the light propagates a short 
distance down the fiber. Also, if we assume the laser 
output is a Gaussian beam then the Fraunhofer 
distance is irrelevant, since a Gaussian beam has the 
unique property that it maintains the same shape at 
all propagation distances1. Thus, for practical 
purposes, we can assume that equation (7) is valid 
for a butt-coupled fiber. 
 
We can write an expression for the two dimensional 
output aperture function in terms of the rectangular 
function rect(x/w). This function has been defined to 
have a value of zero for |x/w| > 0.5, 0.5 for |x/w| = 
0.5, and 1 for |x/w| < 0.5. We apply this function to 
the aperture by letting zero represent no light 
transmission and one represent full light 
transmission. Note that the rect(x/w) function is 

centered at x = 0 and it’s width is equal to w. Using 
this function, we can write the following expression 
for the output aperture: 
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where  is the wavelength of the light and d is the 
distance from the aperture. 
 

The spatial distribution of the emitted laser light 
depends on the geometry of the resonator and on the 
shape of the active medium. If we assume that the 
mirrors at the ends of the resonant cavity are planar 
and perfectly parallel, then the laser output can be 
modeled as a plane wave, which we can express as 
b(x,y) = 1. Because of the difficulty in achieving 
sufficient alignment accuracy with planar mirrors, 
many laser designs use spherical mirrors. In this 
case, the laser output takes the form of a Gaussian 
beam8, which we can express as b(x,y) = 
Gauss(x/wx,y/wy) = exp[-(x/wx)2]exp[-(y/wy)2]. 
Regardless of whether we model the laser output as 
a plane wave or a Gaussian beam, the calculated 
angular divergence of the output power resulting 
from equation (7) will be approximately the same in 
the region of interest for the fiber coupling analysis. 
To illustrate this point, we will use equation (7) to 
calculate the result for both a plane wave and a 
Gaussian beam output. 
 

For a plane wave, equation (7) can be solved as 
follows: 
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where sinc(f) is defined as sin(f)/f.  
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For a Gaussian beam, equation (7) can be solved as: 
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Note that the result in equation (11) is obtained by 
observing that the rectangle function almost entirely 
contains the Gaussian function, resulting in a 
slightly truncated Gaussian function that closely 
approximates the original. 
 

Figure 7 is a plot of both the sinc2( ) function and the 
Gauss2( ) functions. The plots are normalized to a 
spatial frequency of d/w, where  is the wavelength 
of the light, d is the distance from the aperture, and 
w is the width of the aperture. In the region between 
d/w the results are similar for both functions. For 
purposes of this analysis, we will use the Gauss( ) 
function from this point forward in order to be 
consistent with results published in the literature9. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figures 5 and 6 are plots of the angular output 
intensity patterns along the x and y axis as calculated 
in equation (11). The divergence angles of the 

intensity patterns are calculated by observing that 
the radial expansion of the intensity pattern divided 
by the propagation distance is equivalent to the 
tangent (in radians) of the divergence angle. For 
example, for the d/w point on the intesity pattern 
the propagation distance is d, and therefore   
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where  is the angle of divergence. 
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